Search results for "Gas giant"

showing 3 items of 3 documents

A giant exoplanet orbiting a very-low-mass star challenges planet formation models

2019

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…

010504 meteorology & atmospheric sciencesGas giant530 PhysicsFOS: Physical sciencesMinimum massAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia e AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsMultidisciplinary520 AstronomyGiant planetAstronomyPlanetary system620 EngineeringAccretion (astrophysics)ExoplanetOrbitAstrophysics - Solar and Stellar Astrophysics13. Climate actionAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary AstrophysicsScience
researchProduct

EXO-PLANETARY HIGH-TEMPERATURE HYDROCARBONS BY EMISSION AND ABSORPTION SPECTROSCOPY (e-PYTHEAS PROJECT)

2019

International audience; e-PYTHEAS is a multidisciplinary project which combines theoretical and experimental work with exoplanet modelling applications. It sits on the frontier between molecular physics, theoretical chemistry and astrophysics. It aims at enhancing our understanding of the radiative properties of hot gaseous media to allow for improved analysis and interpretation of the large mass of data available on the thousands of exoplanets and exoplanetary systems known to date. Our approach is to use theoretical research validated by laboratory experiments and to then inject it into models of the atmospheres of the giant gaseous planets in the solar system and other planetary systems.…

[PHYS]Physics [physics]Solar SystemAbsorption spectroscopyInfraredGas giantPlanetary system7. Clean energyExoplanetAstrobiology[PHYS] Physics [physics][SDU] Sciences of the Universe [physics]13. Climate action[SDU]Sciences of the Universe [physics]Radiative transferEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsSpectroscopyMolecular physics
researchProduct

Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

2009

We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jup…

010504 meteorology & atmospheric sciencesGas giantEvolutionAstrophysics01 natural sciencesArticleOriginPlanet0103 physical sciencesHot JupiterAstrophysics::Solar and Stellar AstrophysicsHot NeptuneKepler-10b010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsExoplanetsAstronomyAstronomy and AstrophysicsExoplanetCoRoT-7b13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsMass lossPlanetary massJupiter massIce giantPlanetary and Space Science
researchProduct